단층 퍼셉트론 (Single-layer Perceptron)

 

퍼셉트론 (Perceptron) 1957 코넬 항공 연구소에 근무하던 프랑크 로젠블라트(Frank Rosenblatt) MCP 뉴런 모델을 기초로 퍼셉트론이라는 알고리즘을 고안하였다. 퍼셉트론은 하나의 MCP 뉴런이 출력신호를 발생할지 안할지 결정하기 위해 MCP 뉴런으로 들어오는 입력값에 곱해지는 가중치 값을 자동적으로 학습하도록 모델이며 입력 벡터를 부류(class) 구분하는 선형 분류기 이다. 퍼셉트론은 신경망(딥러닝) 기원이 알고리즘이다.

 

퍼셉트론은 다수의 신호를 입력 받아 하나의 신호를 출력한다. 여기서 말하는 신호는 전류처럼 흐름이 있는것을 뜻하며, 흐름의 상태 정보를 앞으로 전달한다. 아래 그림은 x1, x2라는 입력 신호에 w1, w2라는 가중치를 부여하여 y라는 신호를 출력한다.

 

 

 

입력 신호가 뉴런에 보내질 때는 각각 고유한 가중치가 곱해진다. 뉴런에서 보내온 신호의 총합이 정해진 한계를 넘어설 때만 1 출력하게 된다. 이를 뉴런이 활성화 한다라고 표현 있다. 한계를  임계값이라고 한다. 임계값은 보통 θ(세타) 표현된다. 퍼셉트론은 복수의 입력 신호 각각에 고유한 가중치를 부여하게 된다. 가중치는 신호가 결과에 주는 영향력을 조절하는 요소로 작용된다. , 가중치가 클수록 해당 신호가 그만큼 중요하다는 뜻이다.

 

 

그림에서 x 입력 벡터 값을 나타내며, w 가중치를 나타낸다. 바이어스 입력값은 x0, 바이어스 기울기는  w0 표기했으며 f 활성홤수를 나타낸다.

 

·       임계치(threshold): 어떠한 값이 활성화되기 위한 최소값

·       가중치(weight): 선형 경계의 방향성 또는 형태를 나타내는

·       바이어스(bias): 선형 경계의 절편을 나타내는 값으로써, 직선의 경우는 y절편으로 표시

·       net: 입력값과 가중치의 곱을 모두 합한

·       활성홤수(activation function): 뉴런에서 계산된 net값이 임계치보다 크면 1 출력하고, 임계치보다 작은 경우에는 0 출력하는 함수

·       뉴런(neuron): 인공신경망을 구성하는 가장 작은 요소로써, net값에 따라 활성(1) 비활성(0) 출력

 

아래 그림은 많은 훈련 데이터가 추가됨에 따라 선형 경계를 업데이트하는 퍼셉트론을 보여주는 다이어그램이다.

 

 

퍼셉트론으로는 AND, NAND, OR 게이트의 논리회로를 표현할 있다.

[AND 게이트]

AND 게이트는 입력이 둘이고 출력이 하나인 대표적인 퍼셉트론 예시이다.  입력값이 모두 1일때 1 출력한다.

 

예를들어 (w1, w2, θ) 값을 (0.5, 0.5, 0.8)이라고 가정하였을때 계산이다.

·       (0*0.5) + (0*0.5) = 0.0         <  0.8        -> 0

·       (0*0.5) + (1*0.5) = 0.5        <  0.8        -> 0

·       (0*0.5) + (0*0.5) = 0.5        <  0.8        -> 0

·       (1*0.5) + (1*0.5) = 1.0         >  0.8        -> 1

 

[NAND 게이트]

AND게이트에 NOT 연산을 한것으로, AND 게이트 결과값의 반대이다.

 

 

[OR 게이트]

입력 신호중 하나 이상이 1이면 1 출력된다.

 

[단층 퍼셉트론의 한계]

단층 퍼셉트론은 AND, NAND, OR 논리회로를 계산할 있지만 XOR 게이트 연산을 없다. XOR 게이트는 베타적 논리합 이라 불리는 회로이다. 뜻은 한쪽이 1 때만 1 출력한다.

퍼셉트론 이론은 선형 분류이다. 직선을 이용한 분류는 가능하지만 XOR 게이트와 같은 경우 곡선으로 나눌 있기 때문에 비선형 분류이다. 이러한 제약사항을 보완하기 위해 나온것이 다중 (Multi-layer Perceptron)이다.

 

 

 

[참고자료]

·       https://en.wikipedia.org/wiki/Perceptron

·       https://untitledtblog.tistory.com/27

·       https://eehoeskrap.tistory.com/137

·       https://excelsior-cjh.tistory.com/169

 

 

2020-03-11/ Sungwook Kang / http://sungwookkang.com

 

 

인공지능,  Artificial Intelligence, 머신러닝, Machine Learning, 딥러닝, Deep Learning, AI, 신경망, 뉴럴 네트워크, 강화학습, 지도학습, 자율학습, Supervised Learning, Unsupervised Learning, Reinforcement Learning, 퍼셉트론, Perceptron, 단층 퍼셉트론, Single-layer perceptron

머신러닝 학습 방법(Supervised, Unsupervised, Reinforcement)

 

머신러닝의 데이터 학습 방법에는 지도 학습 (Supervised Learning) 자율 학습 (Unsupervised Leaning), 강화 학습(Reinforcement Learning) 3가지 타입이 있다.

 

지도 학습 (Supervised Learning) 자율 학습 (Unsupervised Leaning) 사용되는 알고리즘은 아래 그림과 같이 나눌 있다.

 

[지도 학습 (Supervised Learning)]

지도 학습(Supervised Learning) 데이터에 대한 레이블(Label)-명시적인 정답- 주어진 상태에서 컴퓨터를 학습시키는 방법이다. 이렇게 구성된 트레이닝 데이터셋으로 학습이 끝나면, 레이블(label) 지정되지 않은 테스트 데이터셋(test set) 이용해서, 학습된 알고리즘이 얼마나 정확히 예측(Prediction)하는지를 측정할 있다.

 

이러한 평가를 위해 교차검증(Cross-Validation) 이용되며 이를 위해 훈련 집합(A Training Set), 검증 집합(A Validation Set), 테스트 집합(A Test Set)으로 나눈다. 교차 검증을 통하여 훈련된 함수에 대해 정밀도(Precision) 재현율(Recall) 측정 있다.

 

 

훈련 데이터는 일반적으로 입력 개체에 대한 속성을 벡터 형태로 포함하고 있으며 각각의 벡터에 대해 원하는 결과가 무엇인지 표시되어 있다. 이렇게 유추된 함수 연속적인 값을 출력하는 것을 회귀분석(Regression)이라 하고 주어진 입력 벡터가 어떤 종류의 값인지 표식 하는것을 분류(Classification) 한다. 지도학습기(Supervised Learner) 하는 작업은 훈련 데이터로부터 주어진 데이터에 대해 예측하고자 하는 값을 올바로 추측해내는 것이다. 목표를 달성하기 위해서는 학습기가 "알맞은" 방법을 통하여 기존의 훈련 데이터로부터 나타나지 않던 상황까지도 일반화하여 처리할 있어야 한다. 훈련데이터로부터 하나의 함수가 유추되고 나면 해당 함수에 대한 평가를 통해 파라미터 최적화를 한다. 지도 학습은 직관적이기 때문에 다른 학습법에 비해 상대적으로 이해하기가 쉽지만, 정확한 학습 결과를 얻으려면 고품질의 많은 학습 데이터셋이 필요하다.

 

 

[자율 학습 (Unsupervised Leaning)]

자율 학습(Unsupervised Learning) 기계학습의 일종으로 데이터가 어떻게 구성되었는지를 알아내는 문제의 범주에 속한다. 방법은 지도 학습(Supervised Learning) 혹은 강화 학습(Reinforcement Learning) 달리 입력 값에 대한 목표치가 주어지지 않는다. 자율학습은 통계의 밀도 추정(Density Estimation) 깊은 연관이 있다. 이러한 자율학습은 데이터의 주요 특징을 요악하고 설명할 있다. 자율학습의 예로는 클러스터링(Clustering), 독립 성분 분석(Independent Component Analysis), 연관성 규칙, 데이터 축소 등이 있다.

 

 

자율 학습은 학습할 데이터셋만 있으면 스스로 학습하기 때문에 편리하기는 하지만 지도 학습에 비해 어려우며, 특정 결과에 대한 가이드가 없기 때문에 기대했던 것과 다른 결과가 나올 수도 있다.

 

[강화 학습 (Reinforcement Learning)]

강화 학습(Reinforcement learning) 기계 학습의 영역이다. 행동심리학에서 영감을 받았으며, 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한 행동들 보상을 최대화하는 행동 혹은 행동 순서를 선택하는 방법이다. 훈련을 따르면 보상(reward) 주고 못하면 (punishment) 주어 감독관이 원하는 방향으로 학습을 하게 된다.

지도 학습처럼 입력과 출력이 명확한 관계를 갖고 있는 상황이 아니라 환경과의 상호 작용의 결과로서 학습을 하거나 경우의 수가 너무 많아 옳고 그름에 대해 사전에 명확하게 기술하기 어려운 환경에 적합한 학습방법이다.

 

 

이러한 문제는 매우 포괄적이기 때문에 게임 이론, 제어이론, 운용 과학, 정보 이론, 시뮬레이션 기반 최적화, 다중 에이전트 시스템, 군집 지능, 통계학, 유전 알고리즘 등의 분야에 사용된다.

 

 

[참고자료]

l  https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/

l  https://ko.wikipedia.org/wiki/%EA%B0%95%ED%99%94_%ED%95%99%EC%8A%B5

 

2020-03-08/ Sungwook Kang / http://sungwookkang.com

 

 

인공지능,  Artificial Intelligence, 머신러닝, Machine Learning, 딥러닝, Deep Learning, AI, 신경망, 뉴럴 네트워크, 강화학습, 지도학습, 자율학습, Supervised Learning, Unsupervised Leaning, Reinforcement Learning

인공지능 /  머신러닝 / 딥러닝 개념

 

인공지능 (Artificial Intelligence) 머신러닝 (Machine Learning), 딥러닝 (Deep Learning) 개념에 대해서 살펴본다.

 

 

 

[인공지능 (Artificial Intelligence)]

인간의 지능으로 있는 사고, 학습, 자기 개발 컴퓨터가 대체할 있도록 하는 방법을 연구하는 분야이다.

 

 

[머신러닝 (Machine Learning)]

사람이 학습하듯 컴퓨터에게 사람이 데이터를 입력시켜 학습을 시키는 방식으로, AI 정확한 결과를 예측 있도록 제공된 학습 데이터를 다양한 알고리즘을 통하여 스스로 학습한다. 머신러닝은 정해진 명령보다 데이터를 기반으로 예측이나 결정을 이끌어 내기 위해 특정한 모델을 구축하는 방식으로 모델을 구축함으로써 입력하지 않은 정보에 대해서다 판단이나 결정을 있게 된다.

 

머신러닝은 현재 많은 분야에서 활용되고 있으며 문자 인식, 안면 인식, 자동 번역, 챗봇 등의 자연어 처리 분야와, 음성 인식, 필기 인식, 텍스트 마이닝, 스팸 필터, 추천 시스템 등의 정보 검색 엔진, 유전자 분석, 단백질 분류 다양한 곳에서 사용되고 있다.

 

 

[딥러닝 (Deep Learning)]

 머신러닝에서 발전된 형태로 사람이 학습할 데이터를 입력하지 않아도 스스로 학습하고 예측한다. 이러한 모델은 인간의 신경망을 본딴 인공 신경망에서 발전한 것이다. 딥러닝은 머신러닝 기법인 Feature Learning (또는 Representation Learning) 하나 이다. 딥러닝은 인공신경망에서 발전한 심층신경망 (Deep Neural Network, DNN)인데, 여러 신경들이 다음 신경에 신호를 전달하는 방식의 모델이기에 딥러닝을 계층적 Feature Learning (또는 Representation Learning)라고 부른다.

 

딥러닝의 가장 대표적인 예가 2016 이세돌 9단과 바둑 대결을 펼쳤던 구글의 알파고이다. 당시 알파고는 바둑 기보를 보고 스스로 바둑 전략을 학습했다.

 

 

페이스북은 딥러닝 기술을 적용해 2014 딥페이스라는 얼굴 인식 알고리즘을 개발했다.

 

이외에도 MS, IBM 많은 테크기업들이 딥러닝을 적용한 제품을 만들었다.

 

 

위에 정의된 내용으로 동물을 판단하는 방법을 살펴보자. 머신러닝의 경우 개의 특징을 추출하는 것은 사람이 하며, 추출된 특징을 학습하여 고양이인지, 개인지 판단하는 것은 기계가 한다. 반면 딥러닝은 특징을 추출하고 학습하는 모든 과정을 기계가 한다.

 

2020-03-07/ Sungwook Kang / http://sungwookkang.com

 

 

인공지능,  Artificial Intelligence, 머신러닝, Machine Learning, 딥러닝, Deep Learning, AI, 신경망, 뉴럴 네트워크, 구글 알파고, 페이스북 딥페이스

CNN (Convolutional Neural Network) 개념

 

CNN(Convolutional Neural Network) 이미지를 분석하기 위해 패턴을 찾는데 유용한 알고리즘으로 데이터에서 이미지를 직접 학습하고 패턴을 사용해 이미지를 분류한다. CNN 핵심적인 개념은 이미지의 공간정보를 유지하며 학습을 한다. CNN 필터링 기법을 인공 신경망에 적용함으로써 이미지를 더욱 효과적으로 처리하기 위해  Yann LeCun (https://en.wikipedia.org/wiki/Yann_LeCun) 제안하였으며 (http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf)  현재 러닝에서 이용되고 있는 형태의 CNN 제안되었다. 기존의 필터링 기법은 고정된 필터를 이용하여 이미지를 처리했다.  아래 그림은 필터의 종류와 기능이다.

 

이미지 관련 Deep Learning CNN이전과 이후의 세상으로 나눌 있다. CNN 나오기 이전 이미지 인식은 2차원으로 이미지(채널까지 포함 3차원) 1차원 배열로 바꾼 FNN (Fully- connected multi layered Neural Network) 신경망으로 학습시키는 방법 이었다. FNN 문제점은 인접 픽셀간의 상관관계가 무시된다는 것이다. FNN 벡터 형태로 표현된 데이터를 입력 받기 때문에 이미지를 반드시 벡터화 해야 한다.  그러나 이미지 데이터는 일반적으로 인접한 픽셀간의 상관관계가 매우 높기 때문에 이미지를 벡터화 (vectorization)하는 과정에서 정보 손실이 발생한다.

[FNN 이용하여 이미지 처리를 위한 벡터화]

 

 

CNN 이미지의 형태를 보존하도록 행렬 형태의 데이터를 입력 받기 때문에 이미지를 벡터화 하는 과정에서 발생하는 정보 손실을 방지할 있다. 기본 개념은 "행렬로 표현된 필터의 요소가 데이터 처리에 적합하도록 자동으로 학습되게 하자" 것이다.

 

 

일반적인 신경망은 affine 명시된 fully-connected 연산과 ReLU 같은 비선형 활성 함수 (nonlinear activation function) 합성으로 정의된 여러 계층을 쌓은 구조이다. CNN Feature 추출하는Convolution Layer 추출된FeatureSub-Sampling하는 Pooling Layer 구성되어 있다. Convolution Layer 이미지에 필터링 기법을 적용하고, Pooling Layer 이미지의 국소적인 부분들을 하나의 대표적인 스칼라 값으로 변환함으로써 이미지 크기를 줄이는 등의 다양한 기능들을 수행한다.

 

 

 

[Convolutional Layer]

Convolution Layer 정의는 합성곱이다. 현재 위치의 출력 데이터는 인접한 Pixel Convolution Filter 곱해서 얻어진 값이다.

 

합성곱(合成-, convolution, 콘벌루션) 하나의 함수와 다른 함수를 반전 이동한 값을 곱한 다음, 구간에 대해 적분하여 새로운 함수를 구하는 수학 연산자이다.

출처 : https://ko.wikipedia.org/wiki/%ED%95%A9%EC%84%B1%EA%B3%B1

 

아래 그림은 단일 채널에 대한 합성곱 계층 동작을 표현한 것이다. 4x4 매트릭은 입력 데이터이고 3X3메트릭은 필터이다. 필터가 데이터 적용되어 계산되는데, 필터가 데이터에서 칸씩 또는 칸씩 이동하면서 계산하는데, 값을 Stride 한다. 이를 통해feature map 만들 있다. 필터(또는 커널) 구성에 따라 이미지 특징을 뽑을 있다.

 

 

 

아래 그림은 멀티 채널 입력 데이터에 필터를 적용한 합성곱을 나타낸다.

 

 

합성곱 계층을 거치면서 이미지의 크기는 점점 작아지게 되고 이미지의 가장자리에 위치한 픽셀들의 정보는 점점 사라지게 된다. 이러한 문제점을 해결하기 위해 이용되는것이 패딩 (Padding)이다. 패딩은 이미지의 가장자리에 특정값으로 설정된 픽셀들을 추가함으로써 입력 이미지와 출력이미지의 크기를 같거나 비슷하게 만드는 역할을 수행한다. 아래 그림은 0 값을 갖는 픽셀을 추가하는 zero-padding 적용한 예이며, CNN에서는 주로 zero-padding 이용된다.

 

 

 

[Pooling Layer]

Pooling (sub sampling 라고도 부른다.) 레이어는 컨볼루션 레이어의 출력 데이터를 받아서 출력 데이터(Activation Map) 크기를 줄이거나 특정 데이터를 강조하는 용도로 사용된다. 풀링 레이어를 처리하는 방법으로는 Max Pooling, Min Pooling, Average Pooling 있다. 일반적으로 풀링과 stride 동일한 크기로 설정하여 모든 원소가 한번씩 처리 되도록 한다.

 

Pooling Layer Convolution Layer 비교하면 아래와 같은 특징이 있다.

·       학습대상 파라미터가 없음

·       Pooling 레이어를 통과하면 행렬의 크기 감소

·       Pooling 레이어를 통해서 채널 변경 없음

 

[Convolution Layer 출력 크기]

  • 입력 데이터 높이: H
  • 입력 데이터 폭: W
  • 필터 높이: FH
  • 필터 폭: FW
  • Strid 크기: S
  • 패딩 사이즈: P

[Pooling Layer 출력 크기]

 

 

요약하면 CNN 입력 데이터에 대해서 필터를 통해 이미지의 특징을 추출하고 (Convolution Layer) , 특징을 강화하고 이미지의 크기를 축소(Pooling Layer)한다. 과정을 반복하여 처리된 결과를 출력한다.

 

 

 

[참고자료]

·       http://taewan.kim/post/cnn/

·       https://untitledtblog.tistory.com/150

·       https://hamait.tistory.com/535

·       https://bcho.tistory.com/1149

·       https://m.blog.naver.com/laonple/221193389981

·       https://gruuuuu.github.io/machine-learning/cnn-doc/#

·       https://crystalcube.co.kr/192

 

 

 

 

2020-03-06/ Sungwook Kang / http://sungwookkang.com

 

 

 

CNN, Convolutional Neural Network, 이미지 처리, CNN 알고리즘, 컨볼루션, 머신러닝, 딥러닝, Deep learning, AI, FNN 알고리즘

+ Recent posts