Python Multiprocessing(Process) 사용한 데이터 처리 속도 개선

 

·       Version : MAC OS, Python 3.X, PIP3

 

대용량 데이터를 효율적으로 처리하기 위해서는 병렬 처리를 활용하는것이 좋다.  파이썬에서 병렬처리를 제공하는 대표적인 라이브러리는 Threading Multiprocessing 모듈이다. Threading 모들은 파이썬의 GIL(Global Interpreter Lock)라는불리우는 잠금 모델을 사용하기 때문에I/O 작업이 아닌 CPU 작업이 많을 경우 오히려 성능이 저하된다. 방식은 Lock 풀고 스레드를 교환하고 다시 Lock 거는 형태의 멀티스레드이기 떄문이다.

파이썬에서는 Multiprocessing 권장하고 있으며,   모듈에는 대표적으로 Pool Process 있지만 이번 글에서는 Process 대해서 다루기로 한다.

 

·       Pool 사용한 처리 속도 개선 : https://sungwookkang.com/1478

 

Process 하나의 프로세스에 하나의 함수를 할당하여 실행한다. Target= 파라메터에 작업을 할당하고, args=(agr1, ) 인수를 할당하여 프로세스 객체를 생성한다. start() 프로세스를 시작하여 join()으로 프로세스의 종료를 기다린다.

import os

import multiprocessing as mp

from multiprocessing import Pool, Process

import threading

import time

import datetime

 

def multiprocess():

    start = int(time.time())

 

    ojbect_list = []

    for i in range(1,12):

        task = Process(target=work_func, args=(i,))

        ojbect_list.append(task)

        task.start()

 

    for task in ojbect_list:

        task.join()

   

    end = int(time.time())

    print("***run time(sec) : ", end-start)   

   

    print("Number of Core : " + str(mp.cpu_count()))

   

 

def work_func(x):

    print("time : " + str(datetime.datetime.today()) +  " value :" + str(x)  + " PID : "  + str(os.getpid()))

 

if __name__ == '__main__':

# execute only if run as a script

   

    multiprocess()

 

 

코드를 실행한 결과를 살펴보면 실행마다 다른 프로세스(PID 각각 다름)에서 실행된것을 있다.

 

Pool Process 차이점은, Pool 경우 실행되어야 작업이 코어수 만큼 분할되고 코어수 만큼 프로세스가 생성되어 힐당받은 작업을 처리하는데, Process 경우 작업마다 새로운 프로세스가 할당되어 작업을 처리한다.

 

 

2021-03-02/ Sungwook Kang / http://sungwookkang.com

 

파이선파이썬, python, 병렬처리, Multiprocessing, Python Multiprocessing, 파이썬 병렬처리, 데이터 처리, Data Processing

 

Python Multiprocessing(Pool) 사용한 데이터 처리 속도 개선

 

·       Version : MAC OS, Python 3.X, PIP3

 

대용량 데이터를 효율적으로 처리하기 위해서는 병렬 처리를 활용하는것이 좋다. 대부분의 머신러닝/딥러닝에 사용되는 프레임워크들은 함수 내부에서 병렬처리가 가능하도록 설계되어 있기 때문에 시스템의 자원을 효율적으로 사용하지만, 일반적으로 많이 사용되는 데이터 가공 모듈인 pandas 같은 모듈은 병렬처리를 기본적으로 제공하지 않기 떄분에 별도의 병렬처리가 가능하도록 코딩을 해야한다.

 파이썬에서 병렬처리를 제공하는 대표적인 라이브러리는 Threading Multiprocessing 모듈이다. Threading 모들은 파이썬의 GIL(Global Interpreter Lock)라는불리우는 잠금 모델을 사용하기 때문에I/O 작업이 아닌 CPU 작업이 많을 경우 오히려 성능이 저하된다. 방식은 Lock 풀고 스레드를 교환하고 다시 Lock 거는 형태의 멀티스레드이기 떄문이다.

파이썬에서는 Multiprocessing 권장하고 있으며,   모듈에는 대표적으로 Pool Process 있지만 이번 글에서는 Pool 대해서 다루기로 한다.

 

아래 실습코드는 1에서 12까지 숫자를 1 간격으로 출력하는데, for 문을 사용한 싱글처리와 Pool 사용하여 병렬 처리를 하였을때의 처리 시간 할당된 프로세스를 확인한다.

import os

import multiprocessing as mp

from multiprocessing import Pool

import threading

import time

import datetime

 

def non_multiprocess():

    print("non multiprocess")

    start = int(time.time())

   

    for i in range(1,12):

        work_func(i)

 

    end = int(time.time())

 

    print("Number of Core : " + str(mp.cpu_count()))

    print("***run time(sec) : ", end-start)   

 

def multiprocess():

    print("non multiprocess")

 

     #멀티 프로세싱을 위한 CPU 숫자 확인 만들기

    num_cores = mp.cpu_count()

    pool = Pool(num_cores)

 

    start = int(time.time())

 

    ojbect_list = []

    for i in range(1,100):

        ojbect_list.append(i)

    #멀티 프로세싱 워커 호출

    pool.map(work_func, ojbect_list)

 

    end = int(time.time())

 

    #메모리 방지 위해 사용

    pool.close()

    pool.join()

 

    print("Number of Core : " + str(mp.cpu_count()))

    print("***run time(sec) : ", end-start)   

 

def work_func(x):

    print("time : " + str(datetime.datetime.today()) +  "value :" + str(x)  + " PID : "  + str(os.getpid()))

   

    time.sleep(1)

 

if __name__ == '__main__':

# execute only if run as a script

    #non_multiprocess()

    multiprocess()

   

 

 

코드를 실행하면 아래와 같은 결과를 확인할 있다. non multiprocess 라고 되어 있는 결과는 for문을 사용한 싱글 프로세스이며, 개의 프로세스(PID : 49650) 사용되었으며, 순차적으로 실행되어 12초의 시간이 소요된 것을 확인할 있다. Multiprocess 경우 동시에 6개의 프로세스(필자의 테스트 컴퓨터는 6core이다.) 할당되었으며 PID 다른것을 확인할 있다. 전체 실행시간은 2초가 소요된 것을 확인할 있다.

 

간단한 테스트에서는 Multiprocessing 대한 효과를 크게 느끼지 못할수도 있으나 데이터가 기하급수적으로 커질때에는 데이터 처리 속도에 따른 시간이 엄청나게 차이난다.

 

 

2021-03-01/ Sungwook Kang / http://sungwookkang.com

 

파이선파이썬, python, 병렬처리, Multiprocessing, Python Multiprocessing, 파이썬 병렬처리, 데이터 처리, Data Processing

 

Python에서 Yahoo 주식 데이터 가져오기

 

·       Version : MAC OS, Python 3.X, PIP3

 

Yahoo Finance(https://finance.yahoo.com/) 에서 제공하는 API 사용하여 Python에서 주식 데이터를 가져오는 방법에 대해서 알아본다.

 

Yahoo Finance API 종류가 다양하며 API에서 제공하는 데이터도 조금씩 다르다. 단순한 시계열 데이터 부터, 기업 재무제표를 제공하는 API 다양하게 제공한다. 다양한 파이썬 패키지로 제공되고 있으며 아래 링크에서 확인할 있다.

·       yahoo-finance-api : https://github.com/topics/yahoo-finance-api?l=python

이번 포스트에서는 일일 주가 데이터를 제공하는 yfinance라는 파이썬 패키지를 사용하였다.

pip3 install yfinance --user

 

패키지 설치가 완료 되었으면, yfinance import하고 원하는 종목명 날짜를 입력하면 데이터를 가져올 있다.아래 예시는 AAPL(APPLE inc) 주가 데이터를 2020 12 1일부터 데이터를 가져온다.

import yfinance as yf

yf.download('AAPL', start = '2020-12-01')

 

 

2 이상의 종목에 대한 데이터를 가져올 경우, list 형식으로 사용할 있다.

yf.download(['AAPL', 'F'],start = '2020-12-01')

 

 

배당이나, 분할, 애널리스트 평가 정보도 yfinance 패키지에서 확인할 있다.

aapl = yf.Ticker('AAPL')

 

배당 내역

aapl.dividends

분할 내역

aapl.splits

애널리스트 평가

aapl.recommendations

 

지금까지 파이썬으로 패키지를 사용하여 데이터를 가져오는것을 실습하였는데, 이렇게 수집된 데이터를 나만의 데이터베이스로 만들고, 각종 지표를 만들어서 비교해봄으로써, 의미있는 2, 3 데이터를 만들어내는것이 중요하다. 단순히 주가의 가격 변동이나 흐름이 아닌, 시장의 방향과 주가의 방향이 매칭되는 종목을 찾고, 다양한 변수를 대입하여 종목을 추천할 있는 알고리즘을 만든다면, 직감이나 일부 정보만을 가지고, 이른바 바라는 주식투자가 아닌 공학 관점에서 가까이 투자할 있지 않을까 생각해 본다.

 

 

 

2020-12-28/ Sungwook Kang / http://sungwookkang.com

 

파이선, 파이썬, python, 주식 데이터 가져오기, 파이썬 주식, 금융공학, 주식 분석, 미국 주식 

 

Python에서 Tesseract 사용하기

 

·       Version : MAC OS, Python 3.X, PIP3

 

이전 포스트에서 Tesseract 오픈소스 소프트웨어를 사용하여 이미지에 포함된 문자열을 추출하는 방법에 대해서 알아 보았다.

·       Tesseract 활용한 이미지 문자인식 : https://sungwookkang.com/1475

 

다른 포스트에도 언급한바 있지만, 이미지의 경우 배경 색상이나, 글꼴, 언어 타입에 따라 인식률에 차이가 크므로, 전처리 과정이 수반되어야 어느정도 정확도를 높일 있다. OpenCV 오픈소스로 공개된 다양한 이미지 처리 모듈을 사용하기 위해서는 파이썬을 활용할 있는데, 시작으로 파이썬에서 Tesseract 임포트하여 사용하는 방법을 설명한다. 이번 포스트의 내용을 따라하기 전에, Tesseract 프로그램이 설치되어 있어야 한다.

 

Python3.X PIP3 설치 한다. 그리고 아래 명령을 사용하여 Tesseract패키지를 설치 한다. 설치과정에서 Permission 문제가 발생하면 –user 명령을 함께 사용한다.

pip3 install pytesseract --user

pip3 install opencv-python --user

 

Python3 실행하여 아래 코드를 작성한다.

from PIL import Image

from pytesseract import *

import re

import cv2

 

img = Image.open('이미지파일명')

 

text = pytesseract.image_to_string(img,lang='euc') #한글은 'kor'

#간혹 lang 오류가 발생할경우, lang 파라메터 제거

#text = pytesseract.image_to_string(img)

 

print(text)

 

아래 결과는 인터넷에서 어느 식당에서 메뉴 사진을 찍은 이미지에서 메뉴와 가격을 추출한것이다. 아직 데이터가 정제되지 않은 상태이며 한글과 영어가 섞여 있는데, 한글은 판독하지 못한것을 확인할 있다.

 

실제 추출된 문자열에서 데이터로 활용하려면, 이미지 인식 개선, 다양한 문자열 인식, 데이터 가공을 통한 유요한 데이터 추출 등의 작업이 추가되어야 한다. 이러한 작업을 하나의 프로그램으로 만들기 위해서 오늘 실습한 코드에서 점진적으로 코드가 추가될 예정이다.

 

 

2020-12-18/ Sungwook Kang / http://sungwookkang.com

 

이미지 인식, OCR, Tesseract, 문자열 인식, OpenCV, 딥러닝, 머신러닝, 글자 인식, 이미지 분석, 파이선, 파이썬, python

 

+ Recent posts