SW Engineering/머신러닝 딥러닝

Tesseract를 활용한 이미지 속 문자인식

SungWookKang 2020. 12. 18. 16:55
반응형

Tesseract 활용한 이미지 문자인식

 

Tesseract 이미지로부터 텍스트를 인식하고 추출하는 소프트웨어이며 HP 연구에서에서 개발된 오픈소스 OCR 엔진이다. 현재까지도 LSTM(Long short-term memory) 같은 딥러닝 방식을 통해 텍스트 인식률을 지속적으로 개선하고 있다. Tesseract 사용하기 위해서는 관련 프로그램을 설치 해야한다. 프로그램은 아래 주소에서 다운로드 받을 있다.

·       https://github.com/tesseract-ocr/tesseract/wiki

 

필자의 경우 MAC OS에서 설치를 진행하였으며 home brew 사용하여 설치 하였다.

brew install tesseract

 

brew 설치한 경우 아래 명령으로 설치된 경로를 확인할 있다.

brew list tesseract

 

 

설치가 완료 되었으면, 이미지 파일을 읽어 문자열을 출력하도록 한다. 배경색상과 글자색상에 따른 이미지 인식률을 확인하기 위해 3가지 케이스를 테스트하였다. 실행명령은 아래와 같다.

tesseract /이미지경로/파일명 stdout

 

Image

Results

 

출력 결과를 살펴보면, 배경색과 글자색의 대비가 높을 수록 높은 인식률을 나타내고 있다. 또한 이미지속의 글자가 단순하고, 글꼴에 따라서도 인식률이 다르게 나타나는것을 확인할 있다. 글에는 포함되어 있지 않지만, 한글과 영어에 따른 인식률 차이도 발생함을 확인할 있었다.

이처럼 전체 텍스트 구조를 분석하고 인식하는 과정에 다양한 오차가 발생하기 때문에, 이미지의 인식률을 높이기 위한 전처리 과정이 필요하며, 대표적으로 OpenCV 사용하여 배경과 글자를 분리하여  작업을 진행할 있다.

 

 

 

2020-12-17/ Sungwook Kang / http://sungwookkang.com

 

이미지 인식, OCR, Tesseract, 문자열 인식, OpenCV, 딥러닝, 머신러닝, 글자 인식, 이미지 분석

 

반응형