분할표본의 사용과 생성 지도학습에서는 개발된 예측 또는 분류 모형을 새로운 데이터에 적용할 경우 얼마나 좋은 성과가 나타날 것인가에 대한 의문이 제기 된다. 특히 모형이 실제로 실행 될 때 가장 좋은 성과를 보이는 것으로 생각되는 모형을 선택 할 수 있도록 다양한 모형들 사이의 성과를 비교하는 것이 주요 관심사가 된다. 일반적으로 생각하기에 미래의 데이터를 가진 주요 성과변수를 잘 분류하거나 예측하는 모형을 선택하는 것이 최선이라고 생각할 수 있지만 모형의 구축과 모형의 성과 평가에 동일한 데이터를 사용할 경우 모형의 편의(bias)가 발생한다. 같은 데이터를 적용하여 가장 좋은 성과를 보이는 모형을 선택할 때 이 모형의 성과가 좀더 좋은 이유는 다음과 같다. 선택된 모형이 비교우위의 모형이기 때문이다...